import ast
import functools
import numbers
import re

from fractions import Fraction, gcd

from . import isl
from .isl import libisl


__all__ = [
    'Expression', 'Constant', 'Symbol', 'symbols',
    'eq', 'le', 'lt', 'ge', 'gt',
    'Polyhedron',
    'Empty', 'Universe'
]


def _polymorphic_method(func):
    @functools.wraps(func)
    def wrapper(a, b):
        if isinstance(b, Expression):
            return func(a, b)
        if isinstance(b, numbers.Rational):
            b = Constant(b)
            return func(a, b)
        return NotImplemented
    return wrapper

def _polymorphic_operator(func):
    # A polymorphic operator should call a polymorphic method, hence we just
    # have to test the left operand.
    @functools.wraps(func)
    def wrapper(a, b):
        if isinstance(a, numbers.Rational):
            a = Constant(a)
            return func(a, b)
        elif isinstance(a, Expression):
            return func(a, b)
        raise TypeError('arguments must be linear expressions')
    return wrapper


_main_ctx = isl.Context()


class Expression:
    """
    This class implements linear expressions.
    """

    __slots__ = (
        '_coefficients',
        '_constant',
        '_symbols',
        '_dimension',
    )

    def __new__(cls, coefficients=None, constant=0):
        if isinstance(coefficients, str):
            if constant:
                raise TypeError('too many arguments')
            return cls.fromstring(coefficients)
        if isinstance(coefficients, dict):
            coefficients = coefficients.items()
        if coefficients is None:
            return Constant(constant)
        coefficients = [(symbol, coefficient)
                for symbol, coefficient in coefficients if coefficient != 0]
        if len(coefficients) == 0:
            return Constant(constant)
        elif len(coefficients) == 1 and constant == 0:
            symbol, coefficient = coefficients[0]
            if coefficient == 1:
                return Symbol(symbol)
        self = object().__new__(cls)
        self._coefficients = {}
        for symbol, coefficient in coefficients:
            if isinstance(symbol, Symbol):
                symbol = symbol.name
            elif not isinstance(symbol, str):
                raise TypeError('symbols must be strings or Symbol instances')
            if isinstance(coefficient, Constant):
                coefficient = coefficient.constant
            if not isinstance(coefficient, numbers.Rational):
                raise TypeError('coefficients must be rational numbers or Constant instances')
            self._coefficients[symbol] = coefficient
        if isinstance(constant, Constant):
            constant = constant.constant
        if not isinstance(constant, numbers.Rational):
            raise TypeError('constant must be a rational number or a Constant instance')
        self._constant = constant
        self._symbols = tuple(sorted(self._coefficients))
        self._dimension = len(self._symbols)
        return self

    @classmethod
    def _fromast(cls, node):
        if isinstance(node, ast.Module) and len(node.body) == 1:
            return cls._fromast(node.body[0])
        elif isinstance(node, ast.Expr):
            return cls._fromast(node.value)
        elif isinstance(node, ast.Name):
            return Symbol(node.id)
        elif isinstance(node, ast.Num):
            return Constant(node.n)
        elif isinstance(node, ast.UnaryOp) and isinstance(node.op, ast.USub):
            return -cls._fromast(node.operand)
        elif isinstance(node, ast.BinOp):
            left = cls._fromast(node.left)
            right = cls._fromast(node.right)
            if isinstance(node.op, ast.Add):
                return left + right
            elif isinstance(node.op, ast.Sub):
                return left - right
            elif isinstance(node.op, ast.Mult):
                return left * right
            elif isinstance(node.op, ast.Div):
                return left / right
        raise SyntaxError('invalid syntax')

    @classmethod
    def fromstring(cls, string):
        string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()', r'\1*\2', string)
        tree = ast.parse(string, 'eval')
        return cls._fromast(tree)

    @property
    def symbols(self):
        return self._symbols

    @property
    def dimension(self):
        return self._dimension

    def coefficient(self, symbol):
        if isinstance(symbol, Symbol):
            symbol = str(symbol)
        elif not isinstance(symbol, str):
            raise TypeError('symbol must be a string or a Symbol instance')
        try:
            return self._coefficients[symbol]
        except KeyError:
            return 0

    __getitem__ = coefficient

    def coefficients(self):
        for symbol in self.symbols:
            yield symbol, self.coefficient(symbol)

    @property
    def constant(self):
        return self._constant

    def isconstant(self):
        return False

    def values(self):
        for symbol in self.symbols:
            yield self.coefficient(symbol)
        yield self.constant

    def issymbol(self):
        return False

    def __bool__(self):
        return True

    def __pos__(self):
        return self

    def __neg__(self):
        return self * -1

    @_polymorphic_method
    def __add__(self, other):
        coefficients = dict(self.coefficients())
        for symbol, coefficient in other.coefficients():
            if symbol in coefficients:
                coefficients[symbol] += coefficient
            else:
                coefficients[symbol] = coefficient
        constant = self.constant + other.constant
        return Expression(coefficients, constant)

    __radd__ = __add__

    @_polymorphic_method
    def __sub__(self, other):
        coefficients = dict(self.coefficients())
        for symbol, coefficient in other.coefficients():
            if symbol in coefficients:
                coefficients[symbol] -= coefficient
            else:
                coefficients[symbol] = -coefficient
        constant = self.constant - other.constant
        return Expression(coefficients, constant)

    def __rsub__(self, other):
        return -(self - other)

    @_polymorphic_method
    def __mul__(self, other):
        if other.isconstant():
            coefficients = dict(self.coefficients())
            for symbol in coefficients:
                coefficients[symbol] *= other.constant
            constant = self.constant * other.constant
            return Expression(coefficients, constant)
        if isinstance(other, Expression) and not self.isconstant():
            raise ValueError('non-linear expression: '
                    '{} * {}'.format(self._parenstr(), other._parenstr()))
        return NotImplemented

    __rmul__ = __mul__

    @_polymorphic_method
    def __truediv__(self, other):
        if other.isconstant():
            coefficients = dict(self.coefficients())
            for symbol in coefficients:
                coefficients[symbol] = \
                        Fraction(coefficients[symbol], other.constant)
            constant = Fraction(self.constant, other.constant)
            return Expression(coefficients, constant)
        if isinstance(other, Expression):
            raise ValueError('non-linear expression: '
                '{} / {}'.format(self._parenstr(), other._parenstr()))
        return NotImplemented

    def __rtruediv__(self, other):
        if isinstance(other, self):
            if self.isconstant():
                constant = Fraction(other, self.constant)
                return Expression(constant=constant)
            else:
                raise ValueError('non-linear expression: '
                        '{} / {}'.format(other._parenstr(), self._parenstr()))
        return NotImplemented

    def __str__(self):
        string = ''
        i = 0
        for symbol in self.symbols:
            coefficient = self.coefficient(symbol)
            if coefficient == 1:
                if i == 0:
                    string += symbol
                else:
                    string += ' + {}'.format(symbol)
            elif coefficient == -1:
                if i == 0:
                    string += '-{}'.format(symbol)
                else:
                    string += ' - {}'.format(symbol)
            else:
                if i == 0:
                    string += '{}*{}'.format(coefficient, symbol)
                elif coefficient > 0:
                    string += ' + {}*{}'.format(coefficient, symbol)
                else:
                    assert coefficient < 0
                    coefficient *= -1
                    string += ' - {}*{}'.format(coefficient, symbol)
            i += 1
        constant = self.constant
        if constant != 0 and i == 0:
            string += '{}'.format(constant)
        elif constant > 0:
            string += ' + {}'.format(constant)
        elif constant < 0:
            constant *= -1
            string += ' - {}'.format(constant)
        if string == '':
            string = '0'
        return string

    def _parenstr(self, always=False):
        string = str(self)
        if not always and (self.isconstant() or self.issymbol()):
            return string
        else:
            return '({})'.format(string)

    def __repr__(self):
        return '{}({!r})'.format(self.__class__.__name__, str(self))

    @_polymorphic_method
    def __eq__(self, other):
        # "normal" equality
        # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs
        return isinstance(other, Expression) and \
                self._coefficients == other._coefficients and \
                self.constant == other.constant

    def __hash__(self):
        return hash((tuple(sorted(self._coefficients.items())), self._constant))

    def _toint(self):
        lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
                [value.denominator for value in self.values()])
        return self * lcm

    @_polymorphic_method
    def _eq(self, other):
        return Polyhedron(equalities=[(self - other)._toint()])

    @_polymorphic_method
    def __le__(self, other):
        return Polyhedron(inequalities=[(other - self)._toint()])

    @_polymorphic_method
    def __lt__(self, other):
        return Polyhedron(inequalities=[(other - self)._toint() - 1])

    @_polymorphic_method
    def __ge__(self, other):
        return Polyhedron(inequalities=[(self - other)._toint()])

    @_polymorphic_method
    def __gt__(self, other):
        return Polyhedron(inequalities=[(self - other)._toint() - 1])

    @classmethod
    def fromsympy(cls, expr):
        import sympy
        coefficients = {}
        constant = 0
        for symbol, coefficient in expr.as_coefficients_dict().items():
            coefficient = Fraction(coefficient.p, coefficient.q)
            if symbol == sympy.S.One:
                constant = coefficient
            elif isinstance(symbol, sympy.Symbol):
                symbol = symbol.name
                coefficients[symbol] = coefficient
            else:
                raise ValueError('non-linear expression: {!r}'.format(expr))
        return cls(coefficients, constant)

    def tosympy(self):
        import sympy
        expr = 0
        for symbol, coefficient in self.coefficients():
            term = coefficient * sympy.Symbol(symbol)
            expr += term
        expr += self.constant
        return expr


class Constant(Expression):

    def __new__(cls, numerator=0, denominator=None):
        self = object().__new__(cls)
        if denominator is None:
            if isinstance(numerator, numbers.Rational):
                self._constant = numerator
            elif isinstance(numerator, Constant):
                self._constant = numerator.constant
            else:
                raise TypeError('constant must be a rational number or a Constant instance')
        else:
            self._constant = Fraction(numerator, denominator)
        self._coefficients = {}
        self._symbols = ()
        self._dimension = 0
        return self

    def isconstant(self):
        return True

    def __bool__(self):
        return bool(self.constant)

    def __repr__(self):
        if self.constant.denominator == 1:
            return '{}({!r})'.format(self.__class__.__name__, self.constant)
        else:
            return '{}({!r}, {!r})'.format(self.__class__.__name__,
                self.constant.numerator, self.constant.denominator)

    @classmethod
    def fromsympy(cls, expr):
        import sympy
        if isinstance(expr, sympy.Rational):
            return cls(expr.p, expr.q)
        elif isinstance(expr, numbers.Rational):
            return cls(expr)
        else:
            raise TypeError('expr must be a sympy.Rational instance')


class Symbol(Expression):

    __slots__ = Expression.__slots__ + (
        '_name',
    )

    def __new__(cls, name):
        if isinstance(name, Symbol):
            name = name.name
        elif not isinstance(name, str):
            raise TypeError('name must be a string or a Symbol instance')
        self = object().__new__(cls)
        self._coefficients = {name: 1}
        self._constant = 0
        self._symbols = tuple(name)
        self._name = name
        self._dimension = 1
        return self

    @property
    def name(self):
        return self._name

    def issymbol(self):
        return True

    def __repr__(self):
        return '{}({!r})'.format(self.__class__.__name__, self._name)

    @classmethod
    def fromsympy(cls, expr):
        import sympy
        if isinstance(expr, sympy.Symbol):
            return cls(expr.name)
        else:
            raise TypeError('expr must be a sympy.Symbol instance')


def symbols(names):
    if isinstance(names, str):
        names = names.replace(',', ' ').split()
    return (Symbol(name) for name in names)


@_polymorphic_operator
def eq(a, b):
    return a.__eq__(b)

@_polymorphic_operator
def le(a, b):
    return a.__le__(b)

@_polymorphic_operator
def lt(a, b):
    return a.__lt__(b)

@_polymorphic_operator
def ge(a, b):
    return a.__ge__(b)

@_polymorphic_operator
def gt(a, b):
    return a.__gt__(b)


class Polyhedron:
    """
    This class implements polyhedrons.
    """

    __slots__ = (
        '_equalities',
        '_inequalities',
        '_constraints',
        '_symbols',
    )

    def __new__(cls, equalities=None, inequalities=None):
        if isinstance(equalities, str):
            if inequalities is not None:
                raise TypeError('too many arguments')
            return cls.fromstring(equalities)
        self = super().__new__(cls)
        self._equalities = []
        if equalities is not None:
            for constraint in equalities:
                for value in constraint.values():
                    if value.denominator != 1:
                        raise TypeError('non-integer constraint: '
                                '{} == 0'.format(constraint))
                self._equalities.append(constraint)
        self._equalities = tuple(self._equalities)
        self._inequalities = []
        if inequalities is not None:
            for constraint in inequalities:
                for value in constraint.values():
                    if value.denominator != 1:
                        raise TypeError('non-integer constraint: '
                                '{} <= 0'.format(constraint))
                self._inequalities.append(constraint)
        self._inequalities = tuple(self._inequalities)
        self._constraints = self._equalities + self._inequalities
        self._symbols = set()
        for constraint in self._constraints:
            self.symbols.update(constraint.symbols)
        self._symbols = tuple(sorted(self._symbols))
        return self

    @classmethod
    def _fromast(cls, node):
        if isinstance(node, ast.Module) and len(node.body) == 1:
            return cls._fromast(node.body[0])
        elif isinstance(node, ast.Expr):
            return cls._fromast(node.value)
        elif isinstance(node, ast.BinOp) and isinstance(node.op, ast.BitAnd):
            equalities1, inequalities1 = cls._fromast(node.left)
            equalities2, inequalities2 = cls._fromast(node.right)
            equalities = equalities1 + equalities2
            inequalities = inequalities1 + inequalities2
            return equalities, inequalities
        elif isinstance(node, ast.Compare):
            equalities = []
            inequalities = []
            left = Expression._fromast(node.left)
            for i in range(len(node.ops)):
                op = node.ops[i]
                right = Expression._fromast(node.comparators[i])
                if isinstance(op, ast.Lt):
                    inequalities.append(right - left - 1)
                elif isinstance(op, ast.LtE):
                    inequalities.append(right - left)
                elif isinstance(op, ast.Eq):
                    equalities.append(left - right)
                elif isinstance(op, ast.GtE):
                    inequalities.append(left - right)
                elif isinstance(op, ast.Gt):
                    inequalities.append(left - right - 1)
                else:
                    break
                left = right
            else:
                return equalities, inequalities
        raise SyntaxError('invalid syntax')

    @classmethod
    def fromstring(cls, string):
        string = string.strip()
        string = re.sub(r'^\{\s*|\s*\}$', '', string)
        string = re.sub(r'([^<=>])=([^<=>])', r'\1==\2', string)
        string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()', r'\1*\2', string)
        tokens = re.split(r',|;|and|&&|/\\|∧', string, flags=re.I)
        tokens = ['({})'.format(token) for token in tokens]
        string = ' & '.join(tokens)
        tree = ast.parse(string, 'eval')
        equalities, inequalities = cls._fromast(tree)
        return cls(equalities, inequalities)

    @property
    def equalities(self):
        return self._equalities

    @property
    def inequalities(self):
        return self._inequalities

    @property
    def constraints(self):
        return self._constraints

    @property
    def symbols(self):
        return self._symbols

    @property
    def dimension(self):
        return len(self.symbols)

    def __bool__(self):
        return not self.is_empty()

    def __contains__(self, value):
        # is the value in the polyhedron?
        raise NotImplementedError

    def __eq__(self, other):
        # works correctly when symbols is not passed
        # should be equal if values are the same even if symbols are different
        bset = self._toisl()
        other = other._toisl()
        return bool(libisl.isl_basic_set_plain_is_equal(bset, other))

    def isempty(self):
        bset = self._toisl()
        return bool(libisl.isl_basic_set_is_empty(bset))

    def isuniverse(self):
        bset = self._toisl()
        return bool(libisl.isl_basic_set_is_universe(bset))

    def isdisjoint(self, other):
        # return true if the polyhedron has no elements in common with other
        #symbols = self._symbolunion(other)
        bset = self._toisl()
        other = other._toisl()
        return bool(libisl.isl_set_is_disjoint(bset, other))

    def issubset(self, other):
        # check if self(bset) is a subset of other
        symbols = self._symbolunion(other)
        bset = self._toisl(symbols)
        other = other._toisl(symbols)
        return bool(libisl.isl_set_is_strict_subset(other, bset))

    def __le__(self, other):
        return self.issubset(other)

    def __lt__(self, other):
        symbols = self._symbolunion(other)
        bset = self._toisl(symbols)
        other = other._toisl(symbols)
        return bool(libisl.isl_set_is_strict_subset(other, bset))

    def issuperset(self, other):
        # test whether every element in other is in the polyhedron
        raise NotImplementedError

    def __ge__(self, other):
        return self.issuperset(other)

    def __gt__(self, other):
        symbols = self._symbolunion(other)
        bset = self._toisl(symbols)
        other = other._toisl(symbols)
        bool(libisl.isl_set_is_strict_subset(other, bset))
        raise NotImplementedError

    def union(self, *others):
        # return a new polyhedron with elements from the polyhedron and all
        # others (convex union)
        raise NotImplementedError

    def __or__(self, other):
        return self.union(other)

    def intersection(self, *others):
        # return a new polyhedron with elements common to the polyhedron and all
        # others
        # a poor man's implementation could be:
        # equalities = list(self.equalities)
        # inequalities = list(self.inequalities)
        # for other in others:
        #     equalities.extend(other.equalities)
        #     inequalities.extend(other.inequalities)
        # return self.__class__(equalities, inequalities)
        raise NotImplementedError

    def __and__(self, other):
        return self.intersection(other)

    def difference(self, other):
        # return a new polyhedron with elements in the polyhedron that are not in the other
        symbols = self._symbolunion(other)
        bset = self._toisl(symbols)
        other = other._toisl(symbols)
        difference = libisl.isl_set_subtract(bset, other)
        return difference

    def __sub__(self, other):
        return self.difference(other)

    def __str__(self):
        constraints = []
        for constraint in self.equalities:
            constraints.append('{} == 0'.format(constraint))
        for constraint in self.inequalities:
            constraints.append('{} >= 0'.format(constraint))
        return '{}'.format(', '.join(constraints))

    def __repr__(self):
        if self.isempty():
            return 'Empty'
        elif self.isuniverse():
            return 'Universe'
        else:
            return '{}({!r})'.format(self.__class__.__name__, str(self))

    @classmethod
    def _fromsympy(cls, expr):
        import sympy
        equalities = []
        inequalities = []
        if expr.func == sympy.And:
            for arg in expr.args:
                arg_eqs, arg_ins = cls._fromsympy(arg)
                equalities.extend(arg_eqs)
                inequalities.extend(arg_ins)
        elif expr.func == sympy.Eq:
            expr = Expression.fromsympy(expr.args[0] - expr.args[1])
            equalities.append(expr)
        else:
            if expr.func == sympy.Lt:
                expr = Expression.fromsympy(expr.args[1] - expr.args[0] - 1)
            elif expr.func == sympy.Le:
                expr = Expression.fromsympy(expr.args[1] - expr.args[0])
            elif expr.func == sympy.Ge:
                expr = Expression.fromsympy(expr.args[0] - expr.args[1])
            elif expr.func == sympy.Gt:
                expr = Expression.fromsympy(expr.args[0] - expr.args[1] - 1)
            else:
                raise ValueError('non-polyhedral expression: {!r}'.format(expr))
            inequalities.append(expr)
        return equalities, inequalities

    @classmethod
    def fromsympy(cls, expr):
        import sympy
        equalities, inequalities = cls._fromsympy(expr)
        return cls(equalities, inequalities)

    def tosympy(self):
        import sympy
        constraints = []
        for equality in self.equalities:
            constraints.append(sympy.Eq(equality.tosympy(), 0))
        for inequality in self.inequalities:
            constraints.append(sympy.Ge(inequality.tosympy(), 0))
        return sympy.And(*constraints)

    def _symbolunion(self, *others):
        symbols = set(self.symbols)
        for other in others:
            symbols.update(other.symbols)
        return sorted(symbols)

    def _toisl(self, symbols=None):
        if symbols is None:
            symbols = self.symbols
        dimension = len(symbols)
        space = libisl.isl_space_set_alloc(_main_ctx, 0, dimension)
        bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
        ls = libisl.isl_local_space_from_space(space)
        for equality in self.equalities:
            ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
            for symbol, coefficient in equality.coefficients():
                val = str(coefficient).encode()
                val = libisl.isl_val_read_from_str(_main_ctx, val)
                dim = symbols.index(symbol)
                ceq = libisl.isl_constraint_set_coefficient_val(ceq, libisl.isl_dim_set, dim, val)
            if equality.constant != 0:
                val = str(equality.constant).encode()
                val = libisl.isl_val_read_from_str(_main_ctx, val)
                ceq = libisl.isl_constraint_set_constant_val(ceq, val)
            bset = libisl.isl_basic_set_add_constraint(bset, ceq)
        for inequality in self.inequalities:
            cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
            for symbol, coefficient in inequality.coefficients():
                val = str(coefficient).encode()
                val = libisl.isl_val_read_from_str(_main_ctx, val)
                dim = symbols.index(symbol)
                cin = libisl.isl_constraint_set_coefficient_val(cin, libisl.isl_dim_set, dim, val)
            if inequality.constant != 0:
                val = str(inequality.constant).encode()
                val = libisl.isl_val_read_from_str(_main_ctx, val)
                cin = libisl.isl_constraint_set_constant_val(cin, val)
            bset = libisl.isl_basic_set_add_constraint(bset, cin)
        bset = isl.BasicSet(bset)
        return bset

    @classmethod
    def _fromisl(cls, bset, symbols):
        raise NotImplementedError
        equalities = ...
        inequalities = ...
        return cls(equalities, inequalities)
        '''takes basic set  in isl form and puts back into python version of polyhedron
        isl example code gives isl form as:
            "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
            our printer is giving form as:
            { [i0, i1] : 2i1 >= -2 - i0 } '''

Empty = eq(0,1)

Universe = Polyhedron()


if __name__ == '__main__':
    #p = Polyhedron('2a + 2b + 1 == 0') # empty
    p = Polyhedron('3x + 2y + 3 == 0, y == 0') # not empty
    ip = p._toisl()
    print(ip)
    print(ip.constraints())
